Part 6

DETERMINATION

Autosomes and Sex chromosomes (allosomes)

- The chromosomes that are involved in sex determination are called sex chromosomes (allosomes).
- They include X & Y chromosomes.
- Autosomes are chromosomes other than sex chromosomes.
- Number of autosomes is same in males and females.

Autosomes and Sex chromosomes (allosomes)

- Henking (1891) studied spermatogenesis in some insects and observed that 50% of sperm received a nuclear structure after spermatogenesis, and other 50 % sperm did not receive it.
- Henking called this structure as the X body (now it is called as Xchromosome).

XX – XO Mechanism

Mechanism of sex determination

XX – XY Mechanism

ZZ – ZW Mechanism

Mechanism of Sex Determination

1. XX-XO Mechanism

- Here, male is heterogametic, i.e. XO (Gametes with X and gametes without X) and female is homogametic, i.e. XX (all gametes are with X-chromosomes).
- E.g. Many insects such as grasshopper.

Mechanism of Sex Determination

2. XX-XY Mechanism

Male is heterogametic (X & Y) and female is homogametic (X only).

• E.g. Human & Drosophila.

Mechanism of Sex Determination

3. ZZ-ZW Mechanism

- Male is homogametic (ZZ) and female is heterogametic (Z & W).
- E.g. Birds.

XX-XO and XX-XY mechanisms show male heterogamety.

ZZ-ZW mechanism shows female heterogamety.

Sex Determination in Humans (XX-XY type)

- Human has 23 pairs of chromosomes (22 pairs of autosomes + 1 pair of sex chromosomes).
- A pair of X-chromosomes (XX) is present in female.
- X & Y chromosomes (XY) are present in male.

Sex Determination in Humans (XX-XY type)

- During spermatogenesis, males produce 2 types of gametes- 50% with X chromosome and 50% with Y chromosome.
- Females produce only ovum with an X-chromosome.

bankofbiology.com

Sex Determination in Humans (XX-XY type)

 There is an equal probability of fertilization of ovum with the sperm carrying either X or Y chromosome.

The sperm determines whether the offspring male or female.

Sex Determination in Honeybee

Parents: Female (32) Male (16) $\downarrow \text{Meiosis}$ Gametes: $16 \ 16$ $\downarrow \text{Mitosis}$ $F_1: \text{Male (16)} \text{Female (32)}$

- It is based on the number of sets of chromosomes an individual receives.
- Fertilised egg develops as a female (queen or worker).
- An unfertilised egg develops as a male (drone). It is called parthenogenesis.

bankofbiology.com

Sex Determination in Honeybee

Parents: Female (32) Male (16) $\downarrow \text{Meiosis}$ Gametes: $16 \ 16$ $\downarrow \text{M} \text{itosis}$ $F_1: \text{Male (16)} \text{Female (32)}$

- Therefore, the females are diploid (32 chromosomes) and males are haploid (16 chromosomes). This is called as haplodiploid sex determination system.
- In this system, the males produce sperms by mitosis. They do not have father and thus cannot have sons, but have a grandfather and can have grandsons.

- It is a sudden heritable change occurring in DNA sequences that results changes in the genotype and the phenotype of an organism.
- Recombination and mutation leads to variation in DNA.

Types of mutation

Point mutation

Frame shift mutation

bankofbiology.com

POINT MUTATION

- It is the mutation due to change in a single base pair of DNA.
- E.g. sickle cell anaemia.

Original sequence

Point mutation

	No mutation	Point mutations			
		Silent	Nonsense	Missense	
				conservative	non-conservative
DNA level	TTC	TTT	ATC	TCC	TGC
mRNA level	AAG	AAA	UAG	AGG	ACG
protein level	Lys	Lys	STOP	Arg	Thr

FRAME SHIFT MUTATION

- It is the deletion or insertion of base pairs resulting in the shifting of DNA sequences.
- Loss (deletion) or gain (insertion/ duplication) of DNA segment cause Chromosomal abnormalities (aberrations).
- Chromosomal aberrations are seen in cancer cells.

MUTAGENS

Mutagens are the agents that induce mutation.

Types of mutagens

Physical mutagens

UV radiation, α, β, γ rays, X-ray etc. **Chemical** mutagens

Mustard gas, phenol, formalin, acetic acid, formic acid, NH₃ etc.

bankofbiology.com

- In human, control crosses are not possible. So the study of family history about inheritance is used.
- Such an analysis of genetic traits in several generations of a family is called pedigree analysis.

- The representation or chart showing family history is called family tree (pedigree).
- In human genetics, pedigree study is utilized to trace the inheritance of a specific trait, abnormality or disease.

SYMBOLS USED IN PEDIGREE ANALYSIS

Male

Mating b/w relatives (consanguineous mating)

Female

Parents above & children below

Sex unspecified

Parents with affected male child

Affected individuals

Mating

Five unaffected offspring

Pedigree analysis helps to understand whether a trait is dominant or recessive.

Pedigree analysis of
Autosomal
dominant trait
(E.g. Myotonic
dystrophy)

Pedigree analysis of
Autosomal
recessive trait
(E.g. Sickle-cell
anaemia)

Queen Victoria was a carrier of hemophilia. So her family pedigree shows many haemophilic descendants.

